STABILIZATION MEASURES – ROCK FALL PROTECTION

Lesson 8 – Topic D

LESSON 8D - ROCK FALL PROTECTION MEASURES

Learning Outcomes -

- Identify the engineering parameters required to design rock fall protection measures;
- List the various methods for rock fall protection;
- Identify design tools for rock fall protection methods such as ditches and fences;
- Discuss the drawbacks and merits of benches on slopes.

Protection Measures Against Rock Falls

- Rock Fall Modeling
- Uniform Slopes Preferred to Benched Slopes
- Ditches Ritchie Ditch Design Chart
- Barriers Gabions, Concrete Blocks, Fabric/Soil Structures
- Rock Catch Fences, Energy Attenuators
- Draped Mesh
- Warning Fences, Sheds, Tunnels.

ROCK FALL MODELING

Simulation Programs -

- Multi variable problem;
- Site calibration;
- Collateral information;
- Colorado Rockfall Simulation Program (CRSP);
- RockFall (RocScience).

Stage 1 Rock Fall Analyses

Collateral Rockfall Evidence

Collateral Rockfall Evidence

Controlled Blasting - Blast Hole Layout

Rock Fall Protection Measures Catchment Area a.k.a. "Ditches" Trapezoidal Ditch PATH OF ROCK TRAJECTORY ON VARIOUS SLOPES

Trapezoidal Ditch (1984 design)

Steep Slope

DESIGN CHART 1H:1V CUTSLOPE 80-foot Slope Height Quick Reference - 80-Ft Slope Catchment Area Width - W Percent Catchment Area Slope 20 Impact Rockfall 4H:1V 6H:1V Flat Retained W (ft) W (ft) W (ft) W (ft) 50% 0 11 16 32 25 44 18 75% 2 19 27 48 80% 4 85% 4 21 31 53 Percent Rockfall Retained 34 90% 5 60 23 40 6 28 69 95% 99% 10/ 36 49 80 Flat Ditch 4H:1V Ditch Slope Height Catchment Area Width Edge of Pavement 70 Catchment (Dilich) Slope Catchment Area Width (ft)

Reference: ODOT. 2001

ODOT Design Guide (2001)

"Recovery Zone"

Ditch Enhancement: Interlocking Concrete Blocks

Ditch Enhancement:

Rock Fall Protection Measures

- Slope Drape
 - Mesh
 - Cable Net

Slope Drape -Mesh

Twisted Wire Mesh

or

Chain Link

Slope Drape Aesthetic Treatment

Slope Drape Installation

Slope Drape – Cable Net

Slope Drape Mesh Failure

Modified Slope Drape

Typical Slope Drape Design Issues

Variables:

- Block Size
- Slope height / inclination
- Interface friction
- Impact loads
- Snow / ice loads

Table 1. Recommended maximum anchor spacing as a function of slope height

Slope Height	Anchor Spacing ^{1,2}
m (ft)	m (ft)
≤ 30 m (100 ft)	15 m (50 ft)
30 – 60 m (100 – 200 ft)	10 m (35 ft)
60 – 90 m (200 – 300 ft)	5 m (20 ft

REF: Muhunthan, B., S. Shu, N. Sasiharan, O.A. Hattamleh, T.C. Badger, S.M. Lowell, and J.D. Duffy, 2005b. Design Guidelines for Wire Mesh/Cable Net Slope Protection, Washington State Transportation Center (TRAC) Report No. WA-RD 612.2, Seattle, Washington, 60 p.

Suspended Nets

Rock Fall Protection
Measures

Sheds

ROCK SHED

Rock Fall Protection Measures: Tunnels

SHEET No 6: Middle Cut I 90 MP 66.27 – 66.31 (Left) WB

S18

Stabilization Sequence:

- ► Remove rock slab at location "A" using mechanical scaling.
- Intensive hand scaling with selective mechanical scaling of entire slope including tree removal from face and 15 ft beyond crest to clearing limit.
- Install rock bolts or dowels from top down at specified locations and as directed by the Engineer.
- Apply 4-inch minimum thickness fiber reinforced shotcrete at location "B".
- ▶ Install horizontal drains at locations shown (upper row = 5 @ 30 ft, lower row = 3 @ 40 ft)
- ► Install 12" x 12" cable net with double-twist wire mesh to limits shown (12 ft +/- 2 ft above ditch).

KEY	STABILIZATION ITEM	EST QTY (Sheet 6)
•	60 kip tensioned rock bolt	24 x 20 ft = 480 ft
	60 kip untensioned rock dowel	12 x 20 ft = 240 ft
•	Horizontal drain	3 x 40 ft + 5 x 30 ft = 270 ft
	Scaling / Debris removal	40 crew hr & 2 machine day / 2000 cy
	Shotcrete	40 ft x 10 ft x 4 in = 5 cy
	Slope Drape	140 ft x 70 ft avg = 9800 sf

LESSON 8D - ROCK FALL PROTECTION MEASURES

Learning Outcomes -

- Identify the engineering parameters required to design rock fall protection measures;
- List the various methods for rock fall protection;
- Identify design tools for rock fall protection methods such as ditches and fences;
- Discuss the drawbacks and merits of benches on slopes.